METHODIST COLLEGE OF ENGINEERING & TECHNOLOGY HYDERABAD

DEPARTMENT OF MECHANICAL ENGINEERING

LECTURE NOTES

FOR

Industrial Administration and Financial Management

$$CL = \overline{X}$$

$$UCL = \overline{X} + \frac{3\overline{R}}{d_2 \sqrt{n}} = (\overline{X} + A_2 \overline{R})$$

$$LCL = \overline{X} - \frac{3\overline{R}}{d_2 \sqrt{n}} = (\overline{X} - A_2 \overline{R})$$

Note:

In Examp either d'2 value 87 A2 value will be.
provided for particulor n'value

$$CL = \overline{X} = \sum \frac{\overline{X}}{K}, i = 1,2,...k$$

$$\overline{R} = \sum \frac{Ri}{K} ; i = 1,2,3...K$$

For- R-Chart

Central Line $CL = \sum \frac{R_1'}{K}$ Upper control limit, $UCL = \overline{R} \left[1 + \frac{3d_3}{d_2} \right] (31) = \overline{R} D_4$ L'ower Control limit, $LCL = \overline{R} \left[1 - \frac{3d_3}{d_2} \right] (31) = \overline{R} D_3$ In Exam, either $(D_3 \times D_4)$ of (d_3, d_2) values will be provided.

Production of a certain component

Sample	1	2	3	4	5	G	7	8	9	10
Mean	5.4	5.1	5.4	4.9	5.2	4.7	5:1	5:0	5.6	5,2
Range	0.4	0.7	0.7	0.8	0.9	0.6	0.5	0.6	0.7	0.6

Draw the control charts for mean and range, and point out which samples, if any are out of limit.

501

①
$$R = \sum \frac{R!}{K} = \frac{(0.4 \pm 0.7 \pm 0.8 \pm ... + 0.6)}{10} = 0.65$$

3 ULC = Upper (onthal limit -

=
$$\frac{7}{7} + \frac{3R}{42\sqrt{n}} =$$

= $5.1 + \frac{(3 \times 0.65)}{2.847\sqrt{3}} = 5.342$

G Lower Control Limit (LCL)

$$LCL = \bar{X} - \frac{3\bar{R}}{d_2\sqrt{n}}$$

$$= 5.1 - (3 \times 0.65) = 4.857$$

$$= 2.847\sqrt{8}$$

Hore, de value will be given for the given sample Size.

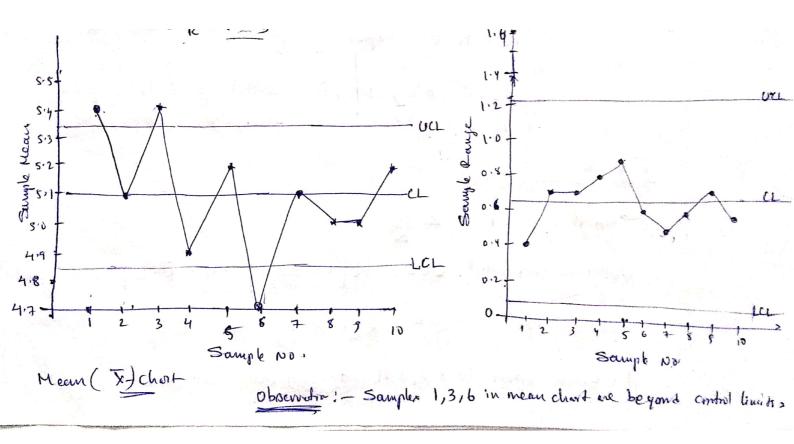
If dz value is not given
then Az value will be given.
In that case, the formule
will be

R-chart

If, D3 & D4 value are not given, seen in stead, d2 & d3 values will be given

In that care the formula would be

$$CL = R$$


$$UCL = R \left[1 + \frac{3d_3}{d_2} \right]$$

$$LCL = R \left[1 - 3 \frac{d_3}{d_2} \right]$$

Now draw the X & R Charts as shown below.

D4 & D3 Value, Will be given in Exam, For n=8 D4= 1.864 D3=0.136

Do-

 $Z = 1000 \times_1 + 800 \times_2 \leftarrow \text{Minitarize}$ Subjected to $6 \times_1 + 2 \times_2 \gg 12$

4x1+12x2 > 24,

XDSDQXQ \$D.

2x1+2x2 >>8

X170, X270

Sol:

Objective function > 7=1000x1+800x2

Conntraints:

6x1+2x2712 7 4x1+12x2724 2x1+2x278

Re write the Constrain inequalities as equalilities and solve to obtain the intracepts.

GK1+2×2=12

Set x1=0, 8 solvefor x2

⇒ 6(0) + 2 × 2=12

> X2=6

Set X2=0 & solve for X,

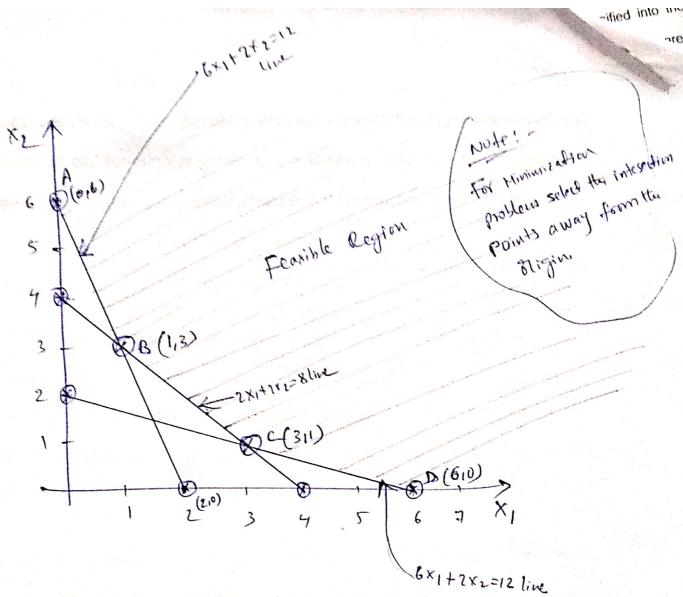
 \Rightarrow $6 \times 1 + 2(0) = 12$

> K1 = 2

into point of into cepts sel are (0,6) & (2,0) for line 6x,+2x2=12

 $1/\eta_{4x_{1}+12x_{2}=24}$ Set $x_{1}=0$, $\Rightarrow x_{2}=2$ - (0,2)Set $x_{2}=0 \Rightarrow x_{1}=6$ (6,0) \therefore point of intercepts ax

(0,2) \$ (6,0) for 44,+124,=24


 $2x_1 + 2x_2 = 8$

Sct x1=0, => x2=4

Set 42=0 : point = (0,4)

> x = 2 = Point = (410)

Now draw the Graph as below

$$Z_{C} = 1000(3) + 800(1) = 3800$$